Magnet Field Quality and Lattice Design Options

S. Peggs November 16, 1998

- 1. Introduction
- 2. Tune Shifts
- 3. Maximum Systematic Errors
- 4. Summary and Conclusions

Introduction

This presentation has 2 goals:

- 1. Make semi-quantitative estimates of *tolerable* systematic harmonics in arc dipoles in a high or low field Future Hadron Collider.
- 2. Draw the connection between field quality b_n and maximum (optimum) half cell length L.
- Conventional post-SSC wisdom is that **systematic errors dominate randoms** in (low temperature) superconducting machines.
- Accelerator Physics analysis is then simplified, emphasizing **tune shifts**, **not resonances**, and making general scaling rules possible.
- ... but note that Talman, Verdier & others are still working to "suppress" resonances at LHC by optimizing integer tune splits.

Passing comments:

- Geometric systematics can be reduced during early industrial production.
- Such reduction in RHIC means that the octupole & decapole correctors in the spool pieces will not be powered. (Landau damping?)
- Reducing the number and complexity of spool pieces is a radical route to significant cost savings. Ends cost. Long cells save.
- Spool money may be saved by maximizing the half cell length L, beyond the conventional 53.4 meters of the LHC, and 100 meters of the SSC.
- Can tuning shims be used to reduce several harmonics at injection in each arc dipole, *after* it has been measured warm?

Tune Shifts

Apologies for 3 pages of AP formulae!

$$B_y = B_0 \left[1 + \sum_{n} \frac{b_n}{r_0^n} x_t^n \right]$$
 (1)

• The tune shift depends on the **betatron amplitude** and the (constant) **momentum offset**, parameterized by m_x and m_δ

$$A_x = m_x \, \sigma_x \tag{2}$$

$$\eta \delta = m_{\delta} \, \sigma_{\delta} \tag{3}$$

RMS betatron & mmtm. beam sizes are $\sigma_x \& \sigma_\delta$.

• Assumption 1: the RF system (et cetera) is manipulated so that

$$\widehat{\sigma_{\delta}} = \widehat{\sigma_x} \tag{4}$$

at F quads. Not unreasonable in practice.

• Assumption 2: the arcs are made from a standard FODO cells with a phase advance of ϕ_c .

• Then

$$\Delta Q_x = \frac{b_n}{r_0^n (1+\delta)} L^{(n+1)/2} \left(\frac{\epsilon_x}{\beta \gamma}\right)^{(n-1)/2}$$

$$\times \sum_{i=0}^{n-1-2i \ge 0} C_{n,i} \alpha_{n,i}(\phi_c) m_{\delta}^{n-1-2i} m_x^{2i}$$

where ϵ_x is the RMS emittance.

- The first piece of this expression already shows how b_n , L, ϵ_x , and $(\beta \gamma)$ may be traded off!
- The sum contains messy coefficients $C_{n,i}$ and $\alpha_{n,i}(\phi_c)$. For example

$$C_{n,i} = \frac{1}{2^{2i+1}} \frac{n!(2i+2)!}{(n-2i-1)!(2i+1)!(i+1)!(i+1)!}$$
(5)

• The first few $C_{n,i}$ values are:

n	Multipole	i = 0	1	2
1	Quadrupole	1/2		
2	Sextupole	1		
3	Octupole	3/2	3/8	
4	Decapole	2	3/2	
5	12-pole	5/2	15/4	5/16
6	14-pole	3	15/2	15/8

• If $\phi_c = 90$ degrees, the first few $\alpha_{n,i}$ values are:

n	Multipole	i = 0	1	2
1	Quadrupole	1.667		
2	Sextupole	2.412		
3	Octupole	3.608	3.467	
4	Decapole	5.555	5.381	
5	12-pole	8.753	8.536	8.340
6	14-pole	14.06	13.78	13.53

Maximum Systematic Errors

How big can ΔQ **be?** No easy answer ...

- Beam-beam tune shifts in hadron colliders are \sim .03, with \sim 10 hour lifetimes. Strong resonances.
- \bullet Space charge tune shifts in boosters are ~ 0.5 , but with reduced lifetimes. Weak resonances.
- Try tracking a simple SHORT cell example:

Parameter	units	value
Storage energy	[TeV]	30.0
Injection energy	[TeV]	1.0
Dipole field (store)	[T]	12.5
Transverse RMS emittance, ϵ	$[\mu \mathrm{m}]$	1.0
Half cell length, L	[m]	110
Max. cell beta, $\widehat{\beta}$	[m]	376
Max. cell dispersion, $\hat{\eta}$	[m]	3.85
Max. betatron size, $\widehat{\sigma}_{\beta}$	[mm]	.594
Mmtm. width, σ_p/p	$[10^{-3}]$.1545

TOP: octupole $b_3 = 5 \times 10^{-4}$ at $r_0 = 16$ mm.

BOTTOM: decapole $b_4 = 30 \times 10^{-4}$.

Lines are prediction, symbols are numerical data.

- Assumption 3: the maximum allowable tune shift is $\Delta \widehat{Q}_x \approx 0.1$.
- Assumption 4: the extreme tune shift of interest occurs when $m_x = |m_{\delta}| \equiv m$.

This leads (at last) to the major result for the maximum systematic harmonics

$$\frac{b_n}{r_0^n} \le \widehat{\Delta Q}_x \frac{1}{D_n} L^{-(n+1)/2} \left(\frac{\beta \gamma}{m^2 \epsilon_x} \right)^{(n-1)/2} \tag{6}$$

• If $\phi_c = 90$ degrees, the first few values of $D_n(\phi_c)$ are

n	Multipole	D_n
1	Quadrupole	.8333
2	Sextupole	2.412
3	Octupole	6.712
4	Decapole	19.18
5	12-pole	56.49
6	14-pole	170.9

How big can L be? How big can b_n be?

Maximum allowable systematic harmonics versus half cell length, when $\Delta \widehat{Q}_x = 0.1$, $\phi_c = 90$ degrees, $\epsilon_x = 1 \mu \text{m}$, and m = 3, at an energy of 1 TeV, with a reference radius of $r_0 = 16 \text{ mm}$.

Summary and Conclusions

- 1. Systematic field errors dominate random field errors in contemporary low temperature superconducting magnets.
- 2. Presumably systematics will also dominate in HTS magnets. This greatly simplifies the AP analysis.
- 3. Calculations of tune shifts may be manipulated to give scaling rules for maximum allowable systematics.
- 4. Lattices with relatively long arc cells have cost saving advantages.
- 5. Arc cell length may be traded off against systematic field quality.
- 6. Accelerator physicists are challenged to increase acceptable tune shifts towards 0.1. Is beam based nonlinear correction necessary?